The John Zink Hamworthy Combustion Handbook 2nd Edition by Charles E Baukal Jr – Ebook PDF Instant Download/Delivery: 143983962X, 9781439839621
Full download The John Zink Hamworthy Combustion Handbook 2nd Edition after payment

Product details:
ISBN 10: 143983962X
ISBN 13: 9781439839621
Author: Charles E Baukal Jr
The John Zink Hamworthy Combustion Handbook 2nd Table of contents:
1 Introduction
1.1 Process Industries
1.1.1 Hydrocarbon and Petrochemical
1.1.2 Power Generation
1.1.3 Pollution Control
1.2 Literature Review
1.2.1 Combustion
1.2.2 Process Industries
1.2.3 Combustion in the Process Industries
1.3 Fired Heaters
1.3.1 Reformers
1.3.2 Process Heaters
1.4 Burners
1.4.1 Competing Priorities
1.4.2 Design Factors
1.4.2.1 Fuel
1.4.2.2 Oxidizer
1.4.2.3 Gas Recirculation
1.4.3 General Burner Types
1.4.3.1 Mixing Type
1.4.3.2 Fuel Type
1.4.3.3 Combustion Air Temperature
1.4.3.4 Draft Type
1.4.3.5 Location
1.4.4 Potential Problems
1.5 Design Tools
1.6 Conclusions
References
2 Refining and Petrochemical Industries
2.1 Introduction
2.2 Refining
2.2.1 Introduction
2.2.2 Examples of Refining Processes
2.2.2.1 Crude Distillation
2.2.2.2 Visbreaking
2.2.2.3 Hydrotreating
2.2.2.4 Catalytic Reforming
2.2.2.5 Delayed Coking
2.3 Reforming
2.3.1 Introduction
2.3.2 Reforming Reactions
2.3.3 Reforming Catalyst
2.3.4 Reforming for Hydrogen
2.3.5 Reforming for ammonia
2.3.6 Reforming for Methanol
2.4 Ethylene
2.4.1 introduction
2.4.2 Kinetics of Thermal Cracking
2.4.3 Severity of Cracking
2.4.4 Typical Product Distribution
2.4.5 Coking
2.4.6 Decoking
References
3 Fuels
3.1 Introduction
3.2 Oil Recovery
3.3 Natural Gas
3.4 Processing, Refining, and Fuel Use
3.4.1 Liquefied Petroleum Gas
3.4.2 Refinery Gases
3.4.3 Combustible Off-Gas Streams
3.4.3.1 Pressure Swing Adsorption (PSA) Tail Gas
3.4.3.2 Flexicoking Waste Gas
3.4.4 Liquid Fuels
3.4.4.1 Light Oils
3.4.4.2 Heavy Oils
3.4.4.3 Residual Oils
3.4.5 Liquid Naphtha
3.4.6 Typical Flared gas Compositions
3.4.6.1 Oil Field/Production Plant Gases
3.4.6.2 Refinery Gases
3.4.6.3 Ethylene/Polyethylene Gases
3.4.6.4 Other Special Cases
3.5 Fuel Properties
3.5.1 Molecular Weight
3.5.2 Lower and Higher Heating Values
3.5.3 Specific Heat Capacity
3.5.4 Flammability Limits
3.5.5 Flame Speed
3.5.6 Viscosity
3.5.7 Derived Quantities
3.5.7.1 Partial Pressure
3.5.7.2 Adiabatic Flame Temperature
3.5.7.3 Heat Release
3.5.7.4 Volume Equivalent of Flow
3.5.8 Liquid Fuel Properties
3.5.8.1 Flash Point
3.5.8.2 Pour Point
3.5.8.3 Distillation
3.5.8.4 Viscosity
3.5.8.5 Density, Gravity, Specific Volume, and Specific Weight
3.5.8.6 Heat Capacity (Specific Heat)
3.5.9 Photographs of Gaseous Fuel Flames
References
4 Combustion Fundamentals
4.1 Introduction
4.2 Uses for Combustion
4.3 Brief Overview of Combustion Equipment and Heat Transfer
4.4 Chemical Combustion Fundamentals
4.4.1 States of Matter
4.4.2 Physical Properties of Matter
4.4.3 Chemical Structure
4.4.4 Periodic Table
4.4.5 Equations and Avogadro’s Number
4.5 Gaseous State
4.5.1 Kinetic Molecular Theory
4.5.2 gas Laws
4.5.3 Standard and Normal Air
4.5.4 Properties of air
4.5.5 Humidity
4.5.6 Psychrometric Chart
4.5.7 Dalton’s Law of Partial Pressures, Saturation, and Superheated Vapor
4.6 Oxidation-Reduction Equations
4.6.1 Redox Reactions of Gaseous Fuels and Excess air
4.6.2 Flue Gas
4.7 Air-to-Fuel Ratio
4.7.1 Air-to-Fuel Mixture Ratio
4.7.2 Air-to-Fuel Mass Ratio
4.7.3 Turbine Exhaust Gas
4.8 Chemical Thermodynamics
4.8.1 Enthalpy, Entropy, and Heat Capacity
4.8.2 Heat of Combustion
4.8.3 Adiabatic Flame Temperature
4.8.4 Dissociation
4.9 Practical Liquid Fuels
4.10 Combustion Kinetics
4.10.1 Thermal NOx Formation
4.10.2 Prompt NOx Formation
4.10.3 Fuel-Bound NOx
4.11 Flame Properties
4.11.1 Flame Temperature
4.11.2 Available Heat
4.11.3 Minimum ignition Energy
4.11.4 Flammability Limits
4.11.5 Flame Speeds
4.12 Substoichiometric Combustion
4.12.1 Equilibrium and Thermodynamics
4.12.2 Substoichiometric Combustion Revisited
4.13 General Discussion
4.13.1 Air Preheat Effects
4.13.2 Fuel Blend Effects
4.14 Emissions
4.15 Quick Sizing
4.15.1 Finding Saturated Humidity
4.15.2 Stoichiometric Combustion of Air Simplified
4.15.3 Density of Low Pressure Gases
References
5 Solid Fuel Combustion in Suspension
5.1 Introduction
5.2 Fuel Properties and Characterization
5.2.1 Coal
5.2.2 Wood, Biomass, and Pet Coke
Oxidation of Solid Fuels
5.3.1 Heat-up, Devolatilization, and Volatile Oxidation
5.3.2 Char Oxidation
5.3.3 Flammability Characteristics
5.4 Fuel Conveying
5.4.1 Pressure Drop Calculations in Solid/gas Conveying
5.4.2 Horizontal Transport
5.4.3 Vertical Transport and Minor losses
5.4.4 Conveying Options
5.5 Burner Designs
5.5.1 utility and Multiburner applications
5.5.2 industrial burners
5.5.3 Support Fuel
5.6 Furnace and Control Considerations
5.7 Combustion Controls
5.8 Emission Formation and Prediction
5.9 Conclusions
References
6 Catalytic Combustion
6.1 Catalytic Combustion
6.2 Fundamentals
6.2.1 Process
6.2.2 Measurement and Control Engineering
6.2.2.1 Selection of Catalyst
6.2.2.2 Deactivation and Reactivation of Catalysts
6.2.2.3 Criteria for Selecting a Suitable Catalyst
6.2.2.4 Protective Measures against Catalyst Deactivation
6.2.2.5 Reactivation of Catalysts
6.3 Process Details
6.3.1 reactor Types
6.3.2 Safety Systems
6.3.3 Prevention of Pollutant Enrichment and Overheating
6.3.4 Emergency Bypass
6.4 Detail Process Measuring and Control Engineering
6.5 Other Facility Components
6.5.1 Buffer Systems
6.6 Energy Demand and Heat Recovery
6.7 Different Design of Catalytic Waste Gas Cleaning Systems
References
7 Heat Transfer
7.1 Introduction
7.2 Conduction
7.2.1 Thermal Conductivity and Specific Heat
7.2.2 One-Dimensional Steady-State Conduction
7.2.2.1 Plane Wall
7.2.2.2 Composite Wall
7.2.2.3 Contact Resistance
7.2.2.4 Cylinder
7.2.3 Transient Conduction
7.3 Convection
7.3.1 Dimensionless Numbers
7.3.2 Newton’s Law of Cooling
7.3.3 Laminar Flow Convection
7.3.3.1 Fully Developed Velocity and Temperature Profiles
7.3.4 Turbulent Internal Flow
7.3.4.1 Circular Tubes
7.3.4.2 Non-circular Tubes/Sections
7.3.5 Turbulent External Flow
7.3.5.1 Convection Heat Transfer for the Cylinders in Cross Flow
7.3.5.2 Convection Heat Transfer in Banks of Tubes
7.3.6 Forced Convection from Flames
7.3.7 Natural Convection
7.4 Radiation
7.4.1 Blackbody Radiation/Planck Distribution
7.4.1.1 Planck Distribution
7.4.1.2 Wien’s Displacement Law
7.4.1.3 Stefan–Boltzmann Law
7.4.2 Radiant Exchange between Black Surfaces
7.4.3 Radiant Exchange between Cray/Diffuse Surfaces
7.4.4 View Factors for Diffuse Surfaces
7.4.5 Infrared Temperature Measurement
7.4.6 Radiation in Absorbing/Emitting/Scattering Media
7.4.7 Mean-Beam-Length Method
7.4.8 Equation of Radiative Transfer
7.4.9 Radiation Emitted by a Flame
7.5 Heat Transfer in Process Furnaces
7.5.1 Flame Radiation
7.5.2 Furnace Gas Radiation
7.5.3 Refractory Surface Radiation
7.5.4 Analysis of Radiation Heat Transfer
7.5.5 Heat Transfer through the Wall of a Furnace
7.5.6 Heat Transfer in the Process Tube
7.5.7 Furnace Gas Flow Patterns
7.5.8 Role of the Burner in Heat Transfer
7.6 Conclusions
References
8 Flare Radiation
8.1 Introduction
8.2 Properties and Characteristics of Radiation
8.2.1 Electromagnetic Spectrum
8.2.2 Flare Radiation Units
8.2.3 Solar Radiation Level
8.2.4 Radiation Level as a Function of Distance from Source
8.2.5 Flare Radiation Spectrum
8.2.6 Radiation Transmission losses through the Atmosphere
8.3 Environmental Concerns
8.3.1 Radiation Effects on Equipment
8.3.2 Ignition of Flammable Material from Radiant Heating
8.3.3 Radiation Effects on Humans
8.3.4 API 521 Recommendations
8.4 Estimating Flare Radiation
8.5 Measuring Flare Radiation
8.5.1 Description of the Radiometer
8.5.2 Useful Tips When Measuring Flare Radiation
8.5.2.1 Radiometer Selection
8.5.2.2 Sun Interference
8.5.2.3 View Angle
8.5.2.4 Convective Cooling Effects
8.5.2.5 Measuring Technique
8.5.3 Radiometer Cube
References
9 Fundamentals of Fluid Dynamics
9.1 Introduction
9.2 Properties of Fluids
9.2.1 Density of Gases
9.2.2 Ratio of Specific Heat for Gases
9.2.2.1 Definition
9.2.2.2 Ratio of Specific Heat of Mixtures
9.2.2.3 Ratio of Specific Heat as a Function of Temperature
9.2.3 Viscosity of Gases and Liquids
9.2.3.1 General Description of Viscosity
9.2.3.2 Dynamic Viscosity
9.2.3.3 Kinematic Viscosity
9.2.3.4 Other Units of Viscosity
9.2.3.5 Viscosity as a Function of Temperature and Pressure
9.2.3.6 Viscosity of Fluid Mixtures
9.3 Laminar and Turbulent Flow
9.4 Pressure
9.4.1 Units of Pressure
9.4.2 Atmospheric Pressure
9.4.3 Gauge and Absolute Pressure
9.4.4 Static, Velocity, and Total Pressure
9.4.5 Pressure Loss through Fittings
9.4.6 Flow Resistance through Straight Pipe
9.5 Downwash
9.5.1 Over and around Flare Stacks
9.5.2 Over Buildings
9.5.3 Over Terrain
9.6 Flare Tip Internal Burning
9.6.1 Buoyancy Effects
9.6.2 Wind Action
9.7 Gas Dispersion from an Elevated Flare
9.7.1 Atmospheric Dispersion Modeling
9.7.2 Major Factors Affecting GLC
9.8 Heater Draft
9.8.1 Background
9.8.2 Draft Systems
9.8.2.1 Natural-Draft Heaters
9.8.2.2 Mechanical-Draft Heaters
9.8.3 Fundamental Concepts of Draft
9.8.4 Natural Draft Heaters
9.8.4.1 Draft Profile
9.8.4.2 Draft Measurement Location
9.8.4.3 Adjusting Draft
9.8.5 Mechanical Draft Heaters
9.8.6 Instrumentation Used to Measure Heater Draft
9.8.7 Heater Draft Calculations
9.8.8 Effects of Ambient Wind Conditions on Natural Draft Heaters
9.9 Air-Side Pressure Drop through Burners
9.9.1 Definition of Burner Pressure Drop
9.9.2 API 560 Burner Pressure Drop Design Recommendations
9.9.3 Air-Side Capacity Curves
9.10 Burner Fuel Capacity Curves
9.10.1 Background
9.10.2 Discussion of Burner Heat Release
9.10.3 Description of Fuel Capacity Curves
9.10.4 Effects of Internal Nozzle Design on Fuel Capacity Curves
9.10.5 Effects of Orifice Plugging on Fuel Capacity Curves
9.10.6 Generating Fuel Capacity Curves
9.11 Free Jet Flow
9.12 Eduction Processes
9.12.1 Description of Eductor Systems
9.12.2 Application of Eductor Systems
9.12.3 Factors Influencing Eductor Performance
9.13 Flashback
9.13.1 Definition of Flashback in a Burner
9.13.2 Description of Flashback
9.13.3 Major Factors Affecting Flashback
9.14 Flame–Flame Interference Inside Heaters
9.14.1 Description of Flame–Flame Interference
9.14.2 Flow Dynamics Associated with Flame–Flame Interference
9.14.3 Detrimental Effects of Flame-Flame Interference
9.15 Air Leakage into Heaters and Flare Stacks
9.15.1 Estimating Air Infiltration
9.15.2 Heaters
9.15.3 Flare Stacks
Nomenclature
Greek Letters
References
10 Oil Atomization
10.1 Introduction
10.2 Liquid Fuel
10.3 Theoretical Basis of Atomization Process
10.4 Parameters Affecting Atomization
10.5 Spray Characteristics
10.5.1 Droplet Size
10.5.2 Spray Angle
10.5.3 Patternation
10.6 Atomizer Type
10.6.1 Single Fluid Atomizer
10.6.2 Twin Fluid Atomizer
10.6.2.1 Process Oil Gun
10.6.2.2 Boiler Burner Oil Gun
10.7 Oil Gun Performance
10.7.1 Process Oil Gun
10.7.1.1 Atomization Quality
10.7.1.2 Energy Consumption
10.7.1.3 Turndown Ratio
10.7.1.4 Pollutant Emissions
10.7.2 Boiler Oil Gun
10.8 Prediction Model
Nomenclature
References
11 Cold Flow Modeling
11.1 Introduction
11.1.1 Basics of Similitude Theory
11.1.2 Geometric Similarity
11.1.3 Kinematic Similarity
11.1.4 Dynamic Similarity
11.1.5 Principle of Relaxation and Self-Similar Flow Regime
11.2 Physical Model Flow Measurement and Visualization Techniques
11.2.1 Flow Measurement
11.2.2 Velocity Measurement
11.2.3 Pressure Measurement
11.2.4 Temperature Measurement
11.3 Flow Visualization
11.4 Mixing Measurement Using Thermal Energy Balance Method
11.5 John Zink COOL flow Physical Modeling Case Study
11.5.1 Introduction
11.5.2 Boiler Technical Data—(Basis for the Model)
11.5.3 Modeling Criteria
11.5.4 Scale Model Description
11.5.5 Instrumentation
11.5.6 Modeling Procedure
11.5.7 Physical Modeling Results
11.5.7.1 Mass Flow Distribution
11.5.7.2 Primary Air Velocity Distribution
11.5.7.3 Burner Exit Peripheral Air Velocity Distribution
11.5.8 Summary of Case Study
References
12 Thermal Efficiency*
12.1 Introduction
12.2 Problems with Leaks
12.2.1 Reduced Thermal Efficiency
12.2.2 Increased NOx Emissions
12.2.3 Poor Burner Performance
12.2.4 After-Burning
12.2.5 Increased Metal Oxidation and Stress
12.2.6 Other Problems
12.3 Leak Sources/Causes
12.3.1 leaky Combustors
12.3.2 Improperly Sealed Openings
12.3.3 Burners Out of Service
12.3.4 Improper Operation
12.4 Leak Size and Location
12.5 Finding Leaks
12.5.1 Dark Regions
12.5.2 Smoke Testing
12.5.3 IR Camera
12.5.4 Peeling Paint
12.6 Mitigating Leaks
12.6.1 Control Furnace Pressure
12.6.2 Fix Leaks
12.6.3 Operate as Many Burners as Possible
12.7 Conclusion
12.8 Recommendation
References
13 CFD-Based Combustion Modeling
13.1 Introduction
13.2 Computational Fluid Dynamics Model Background
13.2.1 Transport Equations
13.2.2 Turbulence Models
13.2.3 Algebraic Models
13.2.4 One- and Two-Equation Models
13.2.4.1 k-ε Turbulence Model
13.2.4.2 k-ε Turbulence Model Boundary Conditions
13.2.5 Other Turbulence Modeling Approaches
13.3 Computational Fluid Dynamics-Based Combustion Submodels
13.3.1 Regimes of Turbulent Combustion
13.3.2 Reaction Kinetics
13.3.3 Eddy Breakup Model
13.3.4 Eddy Dissipation Combustion Model
13.3.5 Eddy Dissipation Concept
13.3.6 Mixture Fraction Approach for Equilibrium or Finite Rate Chemistry
13.3.7 Pollutant Chemistry Models
13.4 Radiation Models
13.4.1 P-1 radiation Model
13.4.2 Discrete Ordinates radiation Model
13.4.3 Monte Carlo Method
13.4.4 Gas-Radiation Properties
13.4.5 Weighted Sum of Gray Gases Model
13.4.6 Effect of Soot on Thermal Radiation
13.5 Solution Methodology
13.5.1 Problem Setup: Preprocessing
13.5.2 Solution Convergence
13.5.3 Analysis of Results: Postprocessing
13.6 Summary
Nomenclature
References
14 Pollutant Emissions*
14.1 Introduction
14.1.1 Emissions in the Hydrocarbon and Petrochemical Industries
14.1.2 Conversions
14.2 Combustibles
14.2.1 CO and Unburned Fuel
14.2.2 Volatile Organic Compounds
14.3 Particulates
14.3.1 Combustion-Generated Particulates
14.3.2 Parameters Controlling Combustion-Generated Particulates
14.3.3 Measuring Methods
14.3.3.1 Bacharach Method
14.3.3.2 Opacity Method
14.3.3.3 Method 5 or ISO-9096
14.3.3.3.1 Preparation
14.3.3.3.2 On-Site Measurements
14.3.3.3.3 Particulate Recovery
14.4 Carbon Dioxide
14.4.1 CO2 Ceneration
14.4.2 CO2 Capture
14.4.3 CO2 Transport
14.4.4 CO2 Storage
14.4.5 CO2 Usage
14.5 SOx
14.6 Hazardous Air Pollutants
14.6.1 Experimental Setup
14.6.1.1 Experimental Facility
14.6.1.2 Full-Scale Burner Tests
14.6.2 Experimental Results
14.6.2.1 No Systematic Variation
14.6.2.2 High Velocity Jet Mixing Produces Low PICs
14.6.2.3 Turn-Down vs. Mixing Rate
14.6.2.4 BERL-Field Connection
14.6.2.5 Refinery Fuel Gas, Natural Gas Equivalency
14.6.2.6 No Effect of Burner Type
14.6.2.7 Detection Limits
14.6.2.8 Results of the Final Full-Scale Trials
14.6.2.9 Summary
14.6.3 Process Heater, Petroleum Refinery Emissions Factors
14.7 Dioxins and Furans
References
15 NOx Emissions
15.1 Introduction
15.2 Theory
15.2.1 Formation Mechanisms
15.2.1.1 Thermal NOx
15.2.1.2 Prompt NOx
15.2.1.3 Fuel NOx
15.2.2 Important Factors Affecting NOx
15.2.2.1 Air–Fuel Ratio (Stoichiometry)
15.2.2.2 Gas Temperature
15.2.2.3 Air and Fuel Preheat Temperature
15.2.2.4 Fuel Composition
15.2.2.5 Air-Fuel Mixing
15.3 Regulations
15.3.1 Units
15.3.2 Conversions
15.3.3 Hydrocarbon and Petrochemical Industry regulations
15.4 Measurement Techniques
15.5 Abatement Strategies
15.5.1 Pretreatment
15.5.1.1 Fuel Switching
15.5.1.2 Additives
15.5.1.3 Fuel Pretreatment
15.5.1.4 Oxidizer Switching
15.5.2 Combustion Modification
15.5.2.1 Air Preheat Reduction
15.5.2.2 Low Excess Air
15.5.2.3 Staging
15.5.2.4 Gas Recirculation
15.5.2.5 Ultralean Premix
15.5.2.6 Water Injection
15.5.2.7 Reburning
15.5.2.8 Burner Out-of-Service (BOOS)
15.5.2.9 Burner Spacing
15.5.2.10 Pulsed Combustion
15.5.2.11 Flameless Combustion
15.5.2.12 Low NOx Burners
15.5.3 Process Modification
15.5.3.1 Reduced Production
15.5.3.2 Electrical Heating
15.5.3.3 Improved Thermal Efficiency
15.5.3.4 Product Switching
15.5.4 Post-Treatment
15.5.4.1 Selective Catalytic Reduction
15.5.4.2 Selective Non-Catalytic Reduction
15.5.4.3 Catalytic Reduction
15.5.4.4 Other
15.5.5 Implementing Strategies
15.5.5.1 General Implementation
15.5.5.2 More Specific Implementation
15.6 Pilot-Scale Test Results
15.6.1 Conventional burner
15.6.1.1 Fuel Composition Effects
15.6.1.2 Fuel Gas Tip Design
15.6.1.3 Summary
15.6.2 Furnace Temperature Effects on NOx102,103
15.6.2.1 Introduction
15.6.2.2 Furnace Temperature Measurement
15.6.2.3 Test Results
15.6.2.4 Conclusions
15.6.3 Ghost NOx 106
15.6.3.1 Introduction
15.6.3.1.1 NOx Meter Only Reads NO, Not NO2
15.6.3.1.2 NO2 Readily Dissolves in Water
15.6.3.1.3 Catalytic Decomposition of NO2 through the Convection Section
15.6.3.1.4 NOx Formation due to Increased Residence Time
15.6.3.1.5 Distribution of NOx Emissions in the Furnace
15.6.3.1.6 NO2 to NO Reduction Converter Efficiency
15.6.3.1.7 NOx Formation Chemistry
15.6.3.2 Test Description
15.6.3.3 Results
15.6.4 Down-Fired burner 117
References
16 Noise
16.1 Fundamentals of Sound
16.1.1 Introduction
16.1.2 Basics of Sound
16.1.2.1 Sound Pressure Level and Frequency
16.1.2.2 Decibel
16.1.2.3 Sound Power Level
16.1.2.4 Threshold of Hearing
16.1.2.5 Threshold of Pain
16.1.2.6 Correction Scales
16.1.3 Measurements
16.1.3.1 Overall Sound Level and How to Add dB Values
16.1.3.2 Atmospheric Attenuation
16.2 Industrial Noise Pollution
16.2.1 OSHA requirements
16.2.2 international requirements
16.2.3 Noise Sources and Environment interaction
16.3 Mechanisms of Industrial Combustion Equipment Noise
16.3.1 Combustion Roar and Combustion Instability Noise
16.3.1.1 Flare Combustion Roar
16.3.1.2 Flare Combustion Instability Noise
16.3.1.3 Burner Combustion Noise
16.3.1.4 Burner Combustion Instability Noise
16.3.2 Fan Noise
16.3.3 Cas Jet Noise
16.3.3.1 Gas Jet Mixing Noise
16.3.3.2 Shock-Associated Noise
16.3.4 Valve and Piping Noise
16.4 Noise Abatement Techniques
16.4.1 Flare Noise Abatement Techniques
16.4.2 Burner Noise Abatement Techniques
16.4.3 Valve and Piping Noise Abatement Techniques
16.4.4 Fan Noise Abatement Techniques
16.5 Analysis of Combustion Equipment Noise
16.5.1 Multiple Burner Interaction
16.5.2 High-Pressure Flare
16.5.3 Atmospheric attenuation Example
Glossary
References
Bibliography
17 Combustion Training
17.1 Introduction
17.2 Participants
17.2.1 Students
17.2.1.1 Engineers
17.2.1.2 Operators
17.2.1.3 Others
17.2.2 Instructors
17.2.2.1 Employer
17.2.2.2 Supplier
17.2.2.3 University
17.2.3 Training Coordinators
17.3 Learning Styles
17.4 Subject Matter Categories
17.4.1 Fundamentals
17.4.2 Operations
17.5 Training Providers
17.5.1 Internal Providers
17.5.1.1 Forms of Internal Providers
17.5.1.2 Advantages of Internal Providers
17.5.1.3 Disadvantages of Internal Providers
17.5.2 External Providers
17.5.2.1 Forms of External Providers
17.5.2.2 Advantages of External Providers
17.5.2.3 Disadvantages of External Providers
17.5.3 Hybrid Providers
17.5.3.1 Forms of Hybrid Training
17.5.3.2 Advantages of Hybrid Training
17.5.3.3 Disadvantages of Hybrid Training
17.6 Training Locations
17.6.1 institution
17.6.2 On-Site
17.6.3 Hub
17.6.4 Online
17.7 Training Organizations
17.7.1 ASTD
17.7.2 PTECH Organizations
17.8 Other Considerations
17.8.1 instructor Training
17.8.1.1 Preparation
17.8.1.2 Presentation Skills
17.8.1.3 Behind the Scenes
17.8.1.4 Tools
17.8.1.5 Apparel
17.8.1.6 Checklist
17.8.1.7 Introduction and Closing
17.8.2 Accreditation
17.9 Case Studies
17.9.1 British Petroleum 45
17.9.1.1 Importance of Training
17.9.1.2 Training Partnership
17.9.1.3 Customized Operator Training
17.9.1.4 Results
17.9.1.5 Conclusions
17.9.2 Shintech 109
17.9.2.1 Course Design
17.9.2.2 Training
17.9.2.3 Results
17.9.2.4 Conclusions
17.10 Recommendations
People also search for The John Zink Hamworthy Combustion Handbook 2nd:
the john zink hamworthy combustion handbook volume 2
the john zink hamworthy combustion handbook volume 1
the john zink hamworthy combustion handbook second edition volume 2
the john zink hamworthy combustion handbook volume 2 pdf
the john zink combustion handbook pdf free download
Tags: Charles E Baukal Jr, John Zink, Hamworthy Combustion


