High Temperature Materials and Mechanisms 1st Edition by Yoseph Bar Cohen – Ebook PDF Instant Download/Delivery: 1466566469, 9781466566460
Full download High Temperature Materials and Mechanisms 1st Edition after payment

Product details:
ISBN 10: 1466566469
ISBN 13: 9781466566460
Author: Yoseph Bar Cohen
High Temperature Materials and Mechanisms 1st Table of contents:
1 Introduction
1.1 Introduction
1.2 Historical Perspective
1.3 Need for High-Strength High-Temperature Materials
1.4 HT Materials
1.4.1 Carbon–Carbon Composites
1.4.2 Carbon–Silicon Carbide Ceramic Matrix Composite
1.4.3 Ceramics
1.4.4 Ceramic Composites
1.4.5 Cermets
1.4.6 Metal Matrix Composites
1.4.7 Refractory Metals
1.4.8 Superalloys
1.5 HT Processes
1.6 Actuators, Devices, Mechanisms, and Jet Engine Turbines
1.7 NDE and Characterization Methods for HT Materials and Mechanism
1.8 Summary/Conclusions
Acknowledgments
References
Internet Resources
2 High-Temperature Materials Chemistry and Thermodynamics
2.1 Introduction
2.2 How Materials Fail at High Temperature
2.2.1 Melting and Softening
2.2.2 Vaporization
2.2.3 Corrosion and Chemical Reaction with the Atmosphere
2.2.4 Diffusion and Solid-State Reaction
2.2.5 Solid–Solid Phase Transformations
2.3 Noble Metals
2.4 Materials above 2000°C
2.5 Silicon-Based Refractories
2.6 High-Temperature Oxidation
2.7 Volatile Oxides
2.8 Summary
Acknowledgments
References
3 Refractory Metals, Ceramics, and Composites for High-Temperature Structural and Functional Applications
3.1 Introduction
3.1.1 Advantages of and Needs for High Temperatures
3.1.2 Challenges Associated with High Temperatures
3.2 Types of High-Temperature Materials
3.2.1 High-Temperature Metals
3.2.2 Ceramic Materials
3.2.3 High-Temperature Composites
3.2.3.1 Carbon–Carbon Composites
3.2.3.2 Ceramic Matrix Composites
3.2.3.3 Metal Matrix Composites
3.3 High-Temperature Stability
3.3.1 Reaction with the Environment
3.3.2 Vaporization
3.3.3 Ablation
3.3.4 Reaction among Components
3.4 High-Temperature Performance
3.4.1 Mechanical Properties
3.4.1.1 Metals
3.4.1.2 Ceramics
3.4.1.3 Composites
3.4.2 Ionic Conduction
3.4.3 High-Temperature Electronics
3.4.4 Thermal Conduction
3.4.4.1 Metals
3.4.4.2 Ceramics
3.4.4.3 Composites
3.4.4.4 Thermoelectric Energy Conversion
3.4.5 Transduction Properties
3.5 Summary/Conclusions
Acknowledgments
References
4 High-Temperature Adhesives and Bonding
4.1 Introduction
4.2 Fundamentals of Adhesion
4.2.1 Mechanical
4.2.2 Adsorption and Wetting
4.2.3 Chemisorption
4.2.4 Electrostatic
4.2.5 Diffusion
4.2.6 Weak Boundary Layer
4.3 High-Temperature Environments and Adhesives: It Might Not Just Be a Dry Heat
4.4 High-Temperature Adhesives: Structures and Properties
4.4.1 Epoxy and Epoxy Phenol Novolacs
4.4.2 Polyimide
4.4.3 Bismaleimide
4.4.4 Polybenzimidazole
4.4.5 Cyanate Esters
4.4.6 Silicones
4.5 High-Temperature Bonding Applications
4.6 Evaluating High-Temperature Adhesive Performance
4.6.1 Characterizing the Bulk Adhesive for Cohesive Performance
4.6.1.1 DSC
4.6.1.2 TGA
4.6.1.3 DMA and TMA
4.6.2 Screening Tests for Adhesive Performance
Acknowledgments
References
Internet Resources
5 Oxidation of High-Temperature Aerospace Materials
5.1 Introduction
5.2 Experimental Considerations
5.3 Major Features of High-Temperature Oxidation and Corrosion
5.3.1 Overview
5.3.3 Metals, Alloys, and Intermetallics
5.3.3.1 Copper Alloys
5.3.3.2 Iron Alloys (Steels)
5.3.3.3 High-Temperature Nickel-Based Alloys
5.3.3.3.1 Coatings for Superalloys
5.3.3.3.2 Alumina Scale Adhesion
5.3.3.3.3 Transition Alumina Scales
5.3.3.4 Intermetallic Aluminide and Silicide Compounds
5.3.3.5 Refractory Metals and Silicide Coatings
5.3.3.6 MAX Compounds
5.4 Oxidation of SiO2-Forming Ceramic Materials
5.4.1 Passive Oxidation
5.4.1.1 Oxidation in H2O/O2
5.4.2 Active Oxidation
5.4.3 SiC-Based Composites
5.5 Corrosion in Complex Gas/Deposit Environments
5.5.1 Corrosion in Mixed Gases
5.5.2 Hot Corrosion of Alloys
5.5.2.1 Type I Hot Corrosion
5.5.2.2 Type II Hot Corrosion
5.5.2.3 Hot Corrosion of SiC and Si3N4 Ceramics
5.5.2.4 CMAS and Volcanic Ash Considerations
5.6 Re-Entry Materials
5.7 Closing Remarks
Acknowledgments
References
6 High-Temperature Materials Processing
6.1 Introduction
6.2 Powder Synthesis
6.2.1 Introduction
6.2.2 Tantalum Carbide: Model System for UHTC Syntheses
6.2.3 Synthesis of Carbides and Borides
6.3 Consolidation of Bulk Specimens
6.3.1 Tantalum Carbide: Model System for UHTC Sintering
6.3.2 Sintering of Carbides and Borides
6.4 Summary
Acknowledgments
References
7 Characterization of High-Temperature Materials
7.1 Introduction
7.2 Analyses of Materials and Processes
7.2.1 Surface Chemical Analysis Techniques
7.3 Imaging and Visualization Analyzers
7.3.1 Optical Microscopes
7.3.2 Scanning Electron Microscopy
7.3.3 Energy-Dispersive X-Ray Spectroscopy
7.3.4 Focused Ion Beam
7.3.5 Transmission Electron Microscopy
7.3.6 Electron Probe Microanalyzers
7.3.7 Scanning Probe Microscopy
7.3.8 Scanning Tunneling Microscopy
7.3.9 Atomic Force Microscopy
7.4 Materials and Metallurgical Analyzers
7.4.1 X-Ray Diffraction Analysis
7.4.2 X-Ray Fluorescence Spectrometry
7.4.3 X-Ray Absorption Spectroscopy
7.4.4 X-Ray Photoelectron Spectroscopy
7.4.5 Low-Energy Electron Diffraction
7.4.6 Neutron Diffraction
7.4.7 Auger Electron Spectroscopy
7.4.8 Raman Spectroscopy
7.4.9 Electron Microprobe
7.4.10 Electron Energy Loss Spectroscopy
7.4.11 Inductively Coupled Plasma Mass Spectrometry
7.4.12 Particle-Induced X-Ray Emission
7.4.13 Atomic Spectroscopy
7.4.14 Static Secondary Ion Analysis
7.5 Summary/Conclusions
Acknowledgments
References
Internet Resources
8 Nondestructive Evaluation and Health Monitoring of High-Temperature Materials and Structures
8.1 Introduction
8.2 Nondestructive Evaluation of Composites
8.2.1 Ceramic Matrix Composites
8.2.1.1 Acousto-Ultrasonics
8.2.1.2 Modal Acoustic Emissions
8.2.1.3 Electrical Resistance Monitoring
8.2.1.4 Impedance-Based Structural Health Monitoring
8.2.1.5 Pulsed Thermography Technique
8.2.1.6 Thermoelastic Stress Analysis
8.2.2 Monitoring Fiber-Reinforced Polymer Matrix Composites Curing
8.2.2.1 Dielectric Measurement
8.2.2.2 Fiber Optics and Fluorescence Method
8.2.2.3 Ultrasonic Method
8.2.2.4 Thermography and Heat Flux Monitoring
8.2.2.5 Eddy-Current Measurement
8.3 Health Monitoring of Aircraft Engines
8.3.1 Microwave Blade Tip Clearance/Tip Timing Sensor
8.3.2 High-Temperature Fiber Optic Sensors
8.3.3 Smart Sensor Systems
8.3.4 Engine Emissions Monitoring (High-Temperature Electronic Nose)
8.3.4.1 Carbon Monoxide Detection
8.3.4.2 Carbon Dioxide Detection
8.3.4.3 Zirconia-Based Oxygen Sensor
8.3.4.4 Silicon Carbide-Based Hydrocarbon Sensor
8.4 Health Monitoring of Steam Pipes
8.4.1 Methods of Water Height Monitoring
8.4.2 High-Temperature Ultrasonic Probe
8.4.2.1 Design and Fabrication of Ultrasonic Probes
8.4.2.2 Evaluation of Ultrasonic Probes
8.4.3 Pulse-Echo Test System
8.4.4 Signal Processing
8.4.4.1 Autocorrelation Method
8.4.4.2 Hilbert Transform
8.4.4.3 Shannon Energy
8.4.4.4 Results Discussion and Addressing the Issue of Shallow or No Water
8.4.5 Health Monitoring Test of Steam Pipes
8.4.5.1 Characterization of Bulk and Surface Perturbations
8.4.5.2 High-Temperature Ultrasonic Characterization
8.5 Conclusions
Acknowledgments
References
Internet Resources
9 High-Temperature Motors
9.1 Introduction
9.2 Actuators
9.2.1 Actuation Mechanisms and Power Sources
9.2.2 Actuation Performance in Different Environment
9.3 Motors
9.3.1 Switched Reluctance Motors
9.3.1.1 High-Temperature SRM Design
9.3.1.2 Test Results
9.3.2 Brushless DC Motor
9.3.2.1 Design of BLDC (Honeybee Robotics) Motor
9.3.2.2 Control of BLDC Motor
9.3.2.3 High-Temperature BLDC Motor Testing
9.4 Conclusion
Acknowledgments
References
10 High-Temperature Electromechanical Actuators
10.1 Terrestrial and Extraterrestrial Extreme Environments
10.1.1 Introduction
10.1.2 Applications
10.2 High-Temperature Electromechanical Materials
10.2.1 Piezoelectric Materials
10.2.2 High-Temperature Piezoelectrics
10.2.3 Electrostrictive Materials
10.2.4 Electromechanical Actuators
10.3 Competing Actuation Technologies
10.3.1 Magnetostrictive Materials
10.3.2 Shape Memory Alloys
10.3.3 Phase Change Materials
10.3.4 Conventional Electromagnetic Actuators
10.4 Actuator Life
10.4.1 Thermal Expansion
10.4.2 Thermal Aging and Degradation
10.4.3 Creep
10.5 Summary
Acknowledgments
References
11 Thermoacoustic Piezoelectric Energy Harvesters
11.1 Introduction
11.1.1 Overview
11.1.2 History of Thermoacoustics
11.2 Thermoacoustic Phenomenon
11.3 TAP System
11.4 DMTAP versus Conventional TAP System
11.4.1 TAP versus DMTAP
11.4.2 Wave Forms
11.4.3 Magnification Ratio
11.4.4 Power and Efficiency
11.4.5 Onset Temperature of Self-Sustained Oscillations
11.5 Experimental Validation
11.5.1 Experimental Setup
11.5.2 Voltage Output from Piezo-Elements
11.5.3 Vibrometer Scanning of Piezo Surface
11.6 Summary/Conclusions
Acknowledgments
Nomenclature
Greek Symbols
References
Internet Resource
12 Shape Memory and Superelastic Alloys
12.1 Introduction
12.2 Phase Transformation in SMAs
12.2.1 Phase Transformation
12.2.2 Shape Memory Effect
12.2.3 Pseudoelasticity
12.3 High-Temperature Shape Memory Alloys
12.4 Modeling and Characterization
12.4.1 Constitutive Model
12.4.2 Phase Transformation Kinetics
12.4.3 Heat Transfer Model
12.5 Fabrication Processes
12.5.1 Conventional Methods
12.5.2 Additive Manufacturing
12.5.3 Heat Treatment, Shape Setting and Training
12.6 SMA Actuation
12.6.1 One-Way and Two-Way Actuation
12.6.2 Superelasticity
12.6.3 Antagonistic Superelastic-Shape Memory
12.6.4 Control
12.7 Summary
Acknowledgments
References
13 Thermoelectric Materials and Generators: Research and Application
13.1 Introduction
13.1.1 Thermoelectricity and Thermoelectric Generators
13.1.1.1 Thermoelectric Parameters
13.1.1.2 Thermoelectric Generators
13.1.2 Choice and Optimization of Thermoelectric Materials
13.1.2.1 Typical Thermoelectric Materials
13.1.2.2 Optimization of Thermoelectric Materials
13.1.2.3 Nanoscale Effects
13.2 Thermoelectric Nanomaterials
13.2.1 Nanoparticles
13.2.1.1 Bi2Se3 Nanoflakes
13.2.1.2 Bi2Te3Nanoparticles
13.2.2 Nanorods and Nanowires
13.2.2.1 Bi2S3 Polycrystalline Nanorods
13.2.2.2 Bi2Te3Ultrathin Nanowires
13.2.3 Superlattice Structures
13.2.3.1 InGaAs/InGaAsP Superlattice
13.2.3.2 Bi2Te3/Sb2Te3 Superlattice
13.2.4 Complex Nanomaterials
13.2.4.1 Flower-Like Dendritic PbTe
13.2.4.2 Bi0.4Te3Sb1.6 Porous Thin Film
13.2.5 Consolidation and Densification
13.3 Thermoelectric Generators
13.3.1 Basic Structure of a Thermoelectric Generator
13.3.2 MEMS Thermoelectric Generators
13.3.3 Flexible Thermoelectric Generators
13.3.3.1 PDMS-Based Thermoelectric Generator
13.3.3.2 SU-8-Based Thermoelectric Generator
13.3.4 Nanostructured Thermoelectric Generators
13.3.5 Printed Thermoelectric Generators
13.4 Thermoelectric Generator Systems
13.4.1 Cascaded Thermoelectric Generators
13.4.2 Parallel Thermoelectric Generators
13.4.3 Hybrid Systems
13.4.3.1 Photovoltaic-Thermoelectric Hybrid System
13.4.3.2 Battery-Thermoelectric Generator Hybrid System
13.5 Applications of Thermoelectric Generators and Thermoelectric Generator Systems
13.5.1 Automotive Waste Heat Recovery
13.5.2 Stationary Plant Waste Heat Recovery
13.5.3 Body Heat Energy Harvesting
13.5.3.1 Harvestable Body Heat
13.5.3.2 Wearable Biometric Sensors
13.5.3.3 Biomedical Autonomous Devices
13.5.4 Power Supply for Wireless Devices
13.5.4.1 Self-Contained Thermoelectric Generator for Cell Phones
13.5.4.2 Battery-Free Wireless Sensors
13.6 Concluding Remarks
13.6.1 Thermoelectricity at Nanoscale
13.6.2 Cost-Efficiency Trade-Off
Acknowledgments
References
14 High-Temperature Drilling Mechanisms
14.1 Introduction
14.2 Geothermal and Oil Drilling
14.3 Rotary Drill Powered by High-Temperature Actuators
14.4 The Ultrasonic/Sonic Driller/Corer
14.4.1 HT Piezo-Ceramic Actuators
14.4.2 Materials for Fabricating the Drill
14.4.3 Modeling and Analysis of Transducers of the HT USDC
14.4.4 Testbed Setup
14.4.5 HT Piezoelectric Actuated Drills
14.4.5.1 Basic Designs of the HT Piezo-Actuated Drills
14.4.5.2 2.5 cm (1 in.) Diameter Samplers
14.4.5.3 3.81 cm (1.5 in.) Diameter Bismuth Titanate Samplers
14.4.5.4 4.83 cm (2 in.) Diameter LiNbO3Samplers
14.4.5.5 Special Technical Measures for the Operation at HT
14.5 Thermal Drilling
14.5.1 Thermal-Spalling
14.5.2 Melting and Vaporization
14.6 Summary and Conclusions
Acknowledgments
References
Internet Resources
15 High-Temperature Electronics
15.1 Introduction
15.2 Operating Temperature of Electronics Systems
15.3 Thermal Management and Challenges
15.4 High-Temperature Semiconductor Devices
15.4.1 Temperature Effects of Semiconductors
15.4.2 Thermally Induced Failures
15.5 High-Temperature Semiconductor Technologies
15.6 High-Temperature Limits of Passive Components
15.6.1 Temperature Characteristics of Capacitor Materials
15.6.2 Thermally Induced Failures of Capacitors
15.6.3 Temperature Characteristics of Magnetic Materials
15.6.4 Thermally Induced Failure of Magnetic Components
15.7 High-Temperature Passive Materials
15.8 Summary
Acknowledgments
References
16 Ultra-High-Temperature Ultrasonic Sensor Design Challenges
16.1 Systems for Ultra-High-Temperature Sensors
16.1.1 Applications: Sensors in Extreme Environments; Geo-Technical, Space, Nuclear Reactors, Gas Turbines, and So On
16.1.2 Materials and Environmental Limitations
16.2 Sensor Material Selection for High- and Ultra-High-Temperature Applications
16.2.1 Application Specific Environmental Limitations on Material Selection
16.2.2 Useful Life Limitations in Extreme Environments
16.3 Thermal Mechanisms for Consideration in Extreme Environments
16.3.1 Thermal Expansion
16.3.1.1 Thermal Expansion of Sensor Package
16.3.1.2 Thermal Expansion of Sensing Element and Waveguide
16.3.2 Mechanical Degradation Mechanisms
16.4 Design for Thermal Expansion Compensation
16.4.1 Maintaining Structural Integrity and Environmental Seals
16.4.2 Compensating for Thermal Mechanisms
16.5 Future Approaches for the Integration of Packaging and Sensor Electronics
Acknowledgments
References
17 High-Temperature Materials and Mechanisms: Applications and Challenges
17.1 Introduction
17.2 Operating Underground and at Great Earth Depths
17.2.1 Geothermal Energy
17.2.2 Oil and Gas Exploration
17.2.3 Underground Mining
17.2.4 Underground Steam Pipes
17.3 Space Exploration of Hot Planets in the Solar System
17.4 Commercial and Military Applications to Superfast Flights
17.5 Electronics
17.5.1 Military Electronics
17.5.2 Automobile Electronics
17.5.3 Aerospace Electronics
17.6 Summary /Conclusions
People also search for High Temperature Materials and Mechanisms 1st:
high temperature materials and mechanisms pdf
high temperature material processes
what are high temperature materials
high temperature materials research
high temperature metamaterials
Tags: Yoseph Bar Cohen, Temperature Materials, Mechanisms


