Handbook of Polymer Synthesis 2nd Edition by Hans R Kricheldorf, Oskar Nuyken, Graham Swift – Ebook PDF Instant Download/Delivery: 1420030590, 9781498771108
Full download Handbook of Polymer Synthesis 2nd Edition after payment
Product details:
ISBN 10: 1420030590
ISBN 13: 9781498771108
Author: Hans R Kricheldorf, Oskar Nuyken, Graham Swift
Handbook of Polymer Synthesis 2nd Table of contents:
1 Polyolefins
I. Introduction
II. Polyethene
A. Radical Polymerization
B. Coordination Catalysts
1. Titanium Chloride-Based Catalysts
2. Unsupported Titanium Catalysts
3. Supported Catalysts
4. Phillips Catalyst
5. Homogeneous (Single Site) Catalysts
6. Aluminoxane as Cocatalysts
7. Late Transition Metal Catalyst
C. Copolymers of Ethene
1. Radical Copolymerization
2. Linear Low-Density Polyethene (Lldpe)
3. Ethene-Propene Copolymers
4. Ethene-Cycloolefin Copolymers
5. Ethene-Copolymerization by Styrene or Polar Monomers
III. Polypropene
A. Homopolymerization
B. Isotactic Polypropene
1. Kinetic Aspects
2. Active Sites
3. Mechanism
4. Supported Catalysts
5. Role of Lewis Base Esters
6. Homogeneous Catalysts
C. Syndiotactic Polypropylene
1. Elastomeric Polypropene
D. Atactic Polypropene
1. Supported Metallocene Catalysts
E. Copolymers
1. Polymer Characterization and Compounding
IV. Polymers Of Higher a-Olefins
A. Poly(1-Butene)
B. Polymers of Other a-olefins
C. Polycycloolefins
D. Polyisobutene
1. Copolymers of Isobutene
2. Block Copolymers and Graft Polymers
3. Polymers of 1,1- and 1,2-Disubstituted Olefins
References
2 Polystyrenes and Other Aromatic Poly(vinyl compound)s
I. Styrene
A. Synthesis [5,7]B. Homopolymerization
1. Radical Polymerization
2. Controlled Radical Polymerization
3. Anionic Polymerization
4. Cationic Polymerization
5. Coordination Polymerization
C. Copolymerization
1. Poly(styrene-co-methyl methacrylate) (Psmma)
2. Poly(styrene-co-maleic anhydride) (Psma)
3. Poly(styrene-co-acrylonitrile) (Psan)
4. Poly(styrol-co-acrylic ester) and Poly(styrol-co-acrylic acid salts)
5. Poly(styrene-co-butadiene) (Sb) and Poly(styrene-co-acrylonitrile-co-butadiene) (Abs)
6. Copolymerization with Divinylbenzene
D. Block Copolymers
E. Graft Copolymerization
1. Polystyrene Backbone
2. Polystyrene Sidearm
3. Branched and Hyperbranched Polystyrene
II. Substituted Styrenes
A. a-Methylstyrene
1. Cationic Polymerization
2. Coordinative Polymerization
3. Anionic Polymerization
4. Living Radical Polymerization
B. cis- and trans-β-Methylstyrene
1. Cationic Polymerization
C. ar-Methylstyrene
1. Radical Polymerization
2. Cationic Polymerization
3. Coordinative Polymerization
4. Anionic Polymerization
5. Living Radical Polymerization
D. ar-Methoxystyrene
1. Radical Polymerization
2. Cationic Polymerization
3. Coordination Polymerization
4. Anionic Polymerization
5. Living Radical Polymerization
E. ar-Chlorostyrene
1. Radical Polymerization
2. Cationic Polymerization
3. Coordination Polymerization
F. Divinylbenzene
1. Radical Polymerization
2. Cationic Polymerization
3. Anionic Polymerization
4. Living Radical Polymerization
G. p-Diisopropenylbenzene
1. Cationic Polymerization
2. Anionic Polymerization
III. Vinyl Arenes
A. Cationic Polymerization
B. Anionic Polymerization
C. Ziegler-Natta Polymerization
D. Free-Radical Polymerization
IV. N-Vinylcarbazole
A. Monomer Synthesis
B. Radical Polymerization
C. Cationic Polymerization
1. Protonic and Lewis Acids
2. Organic Cation Salts
3. Iodine and Hydrogen Iodide
D. Charge Transfer Polymerization
E. Solid-State Polymerization
V. N-Vinylpyrrolidone
A. Monomer Synthesis
B. Radical Polymerization
1. Bulk Polymerization
2. Aqueous Solution Polymerization
3. Solution Polymerization in Organic Solvents
4. Suspension Polymerization
C. Cationic Polymerization
D. Radiation and Solid-State Polymerization
E. Charge Transfer Polymerization
F. Properties and Applications
1. Properties of Poly(N-Vinylpyrrolidone)
2. Applications of N-Vinylpyrrolidone Polymers
VI. Vinylpyridines
A. Monomers
B. Homopolymerization
1. Radical Polymerization
2. Anionic Polymerization
C. Copolymerization
1. Statistical Copolymers
2. Alternating Copolymers
3. Block and Graft Copolymers
References
3 Poly(vinyl ether)s, Poly(vinyl ester)s, and Poly(vinyl halogenide)s
I. Poly(Vinyl Ether)S
A. Introduction
1. Definition and Historical Background
2. Synthesis of Vinyl Ether Monomers
3. Polymer Synthetic Methods
B. Cationic Methods
1. Bronsted and Lewis Acids
2. Hydrogen Iodide-Iodine (Living/Controlled Cationic Polymerization)
3. Polymerization of Vinyl Ethers with Iodine
4. Initiation by Stable Carbenium and Carbenium Ion-Radical Salts
5. Grignard Reagents
6. Inorganic Halides and Oxyhalides
7. Metal Sulfates
8. Metal Oxides
9. Photochemical Initiation
10. Radiation Techniques
11. Electrochemical Initiation
C. Coordination Cationic Polymerizations
D. Free-Radical Polymerizations
E. Copolymerization
1. Cationic Copolymerization
2. Free-Radical Copolymerization
II. Poly(Vinyl Acetate)
A. Introduction
1. Definition and Historical Background
2. Synthesis of Vinyl Ester Monomers
B. Monomer Reactivity and Polymer Structure
1. General Reactivity Considerations
2. Structure of Poly(vinyl acetate)
C. Free-Radical Polymerization Methods
1. Emulsion Polymerization
2. Suspension Polymerization
3. Bulk Polymerization
4. Solution Polymerization
5. Photopolymerization
6. High-Energy Radiation Polymerization
7. Miscellaneous Methods
D. Controlled Radical Polymerization Methods
E. Modification of Poly(vinyl acetate)
F. Copolymers of Vinyl Acetate
III. Poly(Vinyl Chloride)
A. Introduction
B. Radical Polymerization: General Aspects
C. Radical Polymerization: Procedures
1. Polymerization in Bulk
2. Polymerization in Suspension
3. Polymerization in Emulsion
4. Polymerization in Solution
5. Other Methods of Polymerization
6. Miscellaneous
D. Summary
IV. Poly(Vinyl Fluoride)
A. Introduction
B. Chemically Initiated Processes
1. Bulk Polymerization
2. Solution Polymerization
3. Suspension Polymerization
4. Emulsion Polymerization
5. Polymerizations Initiated by Organometallic Compounds
C. Radiation-Induced Polymerization
D. Technical Production and Properties
1. Effects of Polymerization Variables
2. Properties of Pvf
3. Copolymers
4. Application
V. Poly(Vinylidene Fluoride)
A. Introduction
B. Chemically Initiated Polymerization
1. Polymerization in Emulsion and Suspension
2. Polymerization in Solution
3. Polymerization Initiated with Organometallic Compounds
C. Radiation-Initiated Polymerization
D. Copolymers and Properties of Poly(vinylidene fluoride)
1. Copolymers
2. Properties
3. Applications
E. Polymerization of Other Fluoroalkenes
VI. Poly(Tetrafluoroethene) (Ptfe)
A. Introduction
B. Chemically Initiated Polymerization
1. Polymerization in Emulsion and Suspension [686]2. Polymerization in Solution and Carbon Dioxide
3. Polymerization Initiated with Organometalic Compounds
C. Radiation-Induced Polymerizations
1. Photo-Initiated Polymerization
2. Radiation-Initiated Polymerization
3. Glow-Discharge and Plasma Polymerization
D. Technical Production and Properties of Ptfe
References
4 Polymers of Acrylic Acid, Methacrylic Acid, Maleic Acid and their Derivatives
I. Acrylates And Methacrylates
A. Introduction
1. Formula and History
2. Monomers
3. Reactions
B. Processing
1. Bulk Polymerization
2. Solution Polymerization
3. Suspension Polymerization
4. Emulsion Polymerization
5. Irradiation Polymerization
6. Plasma Polymerization
C. Mechanism
1. Free Radical Polymerization
2. Anionic Polymerization
3. Polymerization by Complex Initiators
4. Metal-free Polymerizations
5. Group Transfer Polymerization
6. Catalytic Chain Transfer Polymerization (Cctp)
7. Living Radical Polymerization
8. Stable Free Radical Polymerization (Sfrp)
9. Atom Transfer Radical Polymerization (Atrp)
II. Acrylamide And Methacrylamide
A. Introduction
B. Monomer Synthesis
C. General Aspects of Polymerization
D. Radical Polymerization
E. Anionic Polymerization
F. Polymerization Processes
6. Chemical Properties
III. Acrylic Acid And Methacrylic Acid
A. Introduction
B. Monomer Synthesis
1. Manufacturing of Acrylic Acid [450]2. Manufacturing of Methacrylic Acid
6. Polymer Synthesis
1. Polymer Analogous Reactions
2. Radical Polymerization
3. Radiation-induced Polymerization [525–527]D. Copolymerization
E. Purification and Fractionation [542]F. Applications [548,549]IV. Anhydrides And Acid Chlorides Of Acrylic And Methacrylic Acid
A. Acryloyl Chloride and Methacryloyl Chloride
B. Acrylic Anhydride and Methacrylic Anhydride
V. Acrylonitrile
A. Introduction
B. Bulk Polymerization
C. Solution Polymerization
1. Radical-Induced Polymerization
2. Anionic Polymerization
3. Transition Metal Catalyzed Polymerization of Acrylonitrile
4. Stereoregularity of Polyacrylonitrile
D. Dispersion, Precipitation, and Emulsion Polymerizations
1. Dispersion Polymerization
2. Precipitation Polymerization of An in Nonaqueous Systems
3. Emulsion Polymerization of Acrylonitrile
VI. Maleic Acid And Related Monomers
A. Introduction
B. Reactivity and Homopolymerization of Maleic Anhydride
C. Copolymerization with Vinyl Monomers
D. Polymerizations of Monomers Derived from Maleic Acid
References
5 Polymeric Dienes
I. Introduction
II. Polybutadiene
A. Anionic Polymerization
B. Coordination Catalysts
C. cis-1,4-Polybutadiene
1. Metallocene-catalysts
D. trans-1,4-Polybutadiene
E. 1,2-Polybutadiene
1. Polymerization Processes
III. Polyisoprene
A. cis-1,4-Polyisoprene
1. Anionic Polymerization
2. Coordinative Catalysts
B. trans-1,4-Polyisoprene
C. 1,2- and 3,4-Polyisoprene
D. Metallocene-catalysts
IV. Chloroprene
A. Sulfur Modified Chloroprene
V. Substituted Polybutadienes
A. Poly(2,3-dimethyl-1,3-butadiene)
B. Poly(alkyl-1,3-butadienes)
C. Phenyl-1,3-butadienes
D. Polybutadienes with Heteroatoms
VI. Poly(1,3-Pentadiene)S A. Poly-1,3-Pentadiene
B. 1,4-Poly(1,3-Pentadiene)
C. Poly(methyl-1,3-pentadiene)
VII. Miscellaneous Dienes
A. Poly(2,4-Hexadiene)
B. Polyterpenes
C. Polycyclodienes
D. Nonconjugated Polydienes
VIII. Copolymerization Of Dienes
A. 1,3-Butadiene-Styrene-Copolymers
B. Block Copolymers
C. Copolymers with Dienes and Olefins
D. Isoprene Copolymers
E. Copolymers of Other Dienes
References
6 Metathesis Polymerization of Cycloolefins
I. Introduction
II. General Mechanistic Aspects
III. Catalysts
A. General Aspects
B. Titanium-Based Initiators
C. Tantalum-Based Initiators
D. Molybdenum-Based Initiators
E. Tungsten-Based Initiators
F. Ruthenium-Based Initiators
G. Concluding Remarks
IV. Thermodynamic Aspects
V. Formation Of Cyclic By-Products
VI. Polymer Microstructure And Mechanistical Considerations
VII. Industrial Applications
A. Norsorex
B. Vestenamer
C. Poly(dicyclopentadiene)
D. Zeonex
E. Others
VIII. Further Applications
Ix. Selected Examples For The Polymerization Of Cyclic Olefins
A. Monocyclic Olefins
1. Cyclobutene and Derivatives
2. Cyclopentene and Derivatives
3. Cyclooctene and Derivatives
4. Cyclooctadiene and Derivatives
B. Bi-and Tricyclic Olefins
1. Norbornene
2. Norbornene Derivatives
References
7 Aromatic Polyethers
I. Introduction
II. Poly(Ether Sulfone)S
A. Syntheses via Electrophilic Substitution
B. Syntheses Via Nucleophilic Substitution
C. Chemical Modification
D. Various Synthetic Methods
E. Ring-Opening Polymerization (Rop)
III. Polyetherketones
A. Syntheses Via Electrophilic Substitution
B. Syntheses Via Nucleophilic Substitution
1. Mechanistic Studies
C. Various Structures
1. Liquid-crystalline Peks?
2. Telechelic oligomers (Toeks), block-copolymers and networks
3. Hyperbranched Peks
D. Unusual Synthetic Methods
1. Polycondensation Methods
2. Ring-opening Polymerization
E. Functionalized poly(ether ketone)s
F. Various Aromatic Polyethers
1. Polyphenyleneoxides
2. Polyethers with heterocycles in the main chain
G. Various Polyethers
H. Aliphatic-Aromatic Polyethers
1. Various Structures and Synthetic Methods
2. Liquid-Crystalline (Lc) Polyethers
I. Aromatic Polysulfides
References
8 Polyurethanes
I. Introduction
II. Isocyanate Chemistry [1–8]A. Basic Reactions of Isocyanates
B. Other Isocyanate Reactions
III. Basic Components In Urethane Technology
A. Isocyanates
B. Polyols
IV. Analysis Of Raw Materials A. Analysis of Isocyanates
B. Analysis of Polyols
C. Calculation of Equivalent Ratios
D. Infrared Spectra of Polyurethanes
V. Polyurethane Foams [2,6,8,13,20,21]A. The Mechanism of Foam Formation [21,22]B. The Role of Components in the Foam Mixture
C. Technology of the Flexible Foam Preparation
D. Integral Skin Foams
E. Microcellular Foams
F. Rigid Foams
G. Processing of Polyurethanes [7,23]H. Reaction Injection Molding (Rim) [24,25]VI. Elastomers [4,8,14,26]A. Processing of Polyurethane Elastomers
1. Cast Polyurethane Systems
2. Vulcanizing Polyurethanes
3. Processing of Thermoplastic Polyurethane Elastomers [23]VII. Elastomeric Polyurethane (‘Spandex’) Fibers
VIII. Coatings [5]A. Two-Component Coatings
B. One-Component Systems
C. Blocked Isocyanates
D. Non-reactive Pu Systems
E. Urethane Oils or Urethane Alkyds
F. Polyurethane Dispersions
IX. Polyurethane Adhesives [6,8,27]X. Other Applications Of Polyurethanes
A. Sealants [28]B. Polyurethane Casting Resins
XI. Environmental Stability Of Polyurethanes
A. Thermal Stability of Polyurethanes [29–32]B. Resistance to Uv-Light of Polyurethanes [36–38]C. Hydrolytic Stability of Polyurethanes [39]XII. Safety Considerations When Working With Polyurethane Raw Materials [3,8]References
9 Polyimides
I. Introduction
II. Condensation Polyimides
A. Polyimides via Poly(amic acid) from Dianhydrides and Diamines. Reaction Conditions and Monomers Reactivity
B. One-step Polycondensation. Thermoplastic Polyimides
C. Polyimides from Dianhydrides and Diisocyanates
D. Other Methods to Condensation Polyimides
1. From Diimides
2. From Silylated Diamines
3. From Dithioanhydrides
4. By a Diels–Alder Reaction
III. Condensation Copolyimides
A. Poly(ester imide)s
1. From Monomers Containing Ester Groups
2. From Imide Containing Monomers
3. Poly(ester imide) Resins
B. Poly(anhydride imide)s
C. Poly(amide imide)s
1. From Imide-containing Monomers
D. Poly(ether imide)s
1. From Monomers Containing Ether Linkages
2. From Biphenols via Nucleophilic Displacement
E. Segmented Polyimides
F. Polyimides Containing Other Heterocycles
G. Polymers with Imide Pendant Groups
4. Organic–Inorganic Hybrid Polyimides
IV. Addition Polyimides
A. Linear Addition Polyimides
B. Thermosetting Polyimides
C. Diels–Alder Polymerization
D. Bisnadimides
E. Ethynyl Terminated Oligoimides
F. Other End-Capping Groups
References
10 Poly(vinyl aldehyde)s, Poly(vinyl ketone)s, and Phosphorus-Containing Vinyl Polymers
I. Poly(Acrolein)
A. Manufacture of the Monomer
B. Radical Polymerization
1. Polymerization in Bulk
2. Precipitation Polymerization
3. Polymerization in Emulsion
4. Polymerization in Solution
5. Radiation-Induced Polymerization
6. Solubilization of the Polymers
C. Ionic Polymerization
1. Anionically
2. Cationically
D. Copolymerizations
1. Radical Copolymerization
2. Graft Copolymerization
3. Oxidative Copolymerization
4. Anionic Copolymerization
5. Block Copolymers
6. Graft Copolymerization
7. Cationic Copolymerization
E. Modification Reactions of Poly(acrolein)
1. Radically Polymerized Acrolein (Redox Poly(acrolein))
2. Anionically Polymerized Acrolein
F. Applications and Economic Aspects
II. Polymers Of Crotonaldehyde And Methacrolein
A. Crotonaldehyde
1. Properties and Structure
2. Synthesis
3. Anionic Polymerization
4. Cationic Polymerization and Field Polymerization
5. Step-growth Polymerization
6. Copolymerization
7. Applications
B. Methacrolein
1. Properties and Reactions
2. Synthesis
3. Radical Polymerization
4. Anionic Polymerization
5. Cationic Polymerization
6. Step-growth Polymerization
7. Methacrolein Copolymers
8. Applications
III. Poly(Methyl Vinyl Ketone)
A. Monomer Synthesis
B. Radical Polymerization
C. Ionic and Group Transfer Polymerization
1. Anionic Polymerization
2. Cationic Polymerization
3. Group Transfer Polymerization
D. Copolymerization
1. Radical Copolymerization
2. Copolymerization in the Presence of Lewis Acids
E. Recent Developments
F. Physical Properties
IV. Polymers Of α,β-Unsaturated Ketones
A. Radical Polymerization
B. Anionic Polymerization
C. Coordinated and Cationic Polymerization
D. Copolymerization
1. Radical-Initiated Copolymerization
2. Ionic-Initiated Copolymerization
E. Physical Properties of the Polymers
V. Phosphorus-Containing Vinyl Polymers
A. 1-Alkenylphosphonic Acid
B. Derivatives of Ethenylphosphonic Acid
C. Diene-type Monomers
D. Vinyl Esters and Divinyl Esters
E. Dimethyl Perfluoro(3-vinyloxypropyl)phosphonate
F. Acrylic Esters, Acrylic Amide, and Styrene-Containing Phosphorus
References
11 Metal-Containing Macromolecules
I. Fundamentals About Metal-Containing Macromolecules
A. Classification
B. Kinetical, Thermodynamical, and Analytical Aspects of Macromolecular Metal Complex Formation
II. Metal-Containing Macromolecules In Biological Systems
A. Metal Complexes in Living Systems
B. Metal Complexes at Natural Polymer
III. Type I: Binding Of Metals To Macromolecular Carriers
A. Anchoring of Metal Complexes or their Ligands at an Organic Macromolecule
1. General Considerations
B. Binding of Metal Ions or Complexes at Organic Polymers
1. Ethers
2. Ketones, Carboxylic Acids and Nitriles
3. Amines, Amido-Oximes and Hydroxamic Acids
4. Schiff Bases
5. Pyridyl, Bipyridyl and Other Heterocycles
6. Porphyrins and Phthalocyanines
C. Binding of Metal Complexes on the Surface of Macromolecular Carriers
D. Polymerization of Metal Containing Monomers
1. Covalent-type Monomers
2. Ionic-type Monomers
3. Coordinative-type Monomers
4. π -Type Monomers
5. Complex/Chelate-type Monomers
IV. Type Ii: Metal Complexes As Part Of A Linear Or Crosslinked Macromolecule Via The Ligand
A. Non-cyclic Organic Ligand Type
B. Cyclic Organic Ligand Type
V. Type Iii: Metal Complexes Or Metals As Part Of A Linear Or Crosslinked Macromolecule Via The Metal
A Homochain Polymers with Covalent Metal–Metal Bonds
B. Heterochain Polymers with Covalent Bonds Between Metals and Another Element
C. Heterochain Polymers with Coordinative Bonds Between Metals and Another Element
1. Chain Forming Coordination Polymers
D. Supramolecular Organization of Coordination Polymers
1. Non-interpenetrating Coordination Polymers
2. Interpenetrating Coordination Polymers
E. Metallocenes as Part of a Polymer Chain
F. Cofacial Stacked Polymeric Metal Complexes
1. Covalent/Covalent Bonds Between the Central Metal Ions
2. Covalent/Coordinative Bonds Between the Central Metal Ions
3. Coordinative/Coordinative Bonds Between the Central Metal Ions
4. Self-organization to Cofacial Arrangements
G. Metallodendrimers
VI. Metals Incorporated Physically Into Macromolecules
References
12 Conducting Polymers
I. Introduction
II. Principles Of Electrical Conduction
III. Doping
IV. Measuremen
V. Types Of Electrically Conducting Organic Materials
VI. Poly(Acetylene)
VII. Various Types And Synthesis Of Poly(Acetylene)
VIII. Consequences: New Types And Methods
A. Modification of Poly(acetylene)
1. Cycloaddition
2. Modification of Polymerization Conditions
IX. Catalyst
X. Orientation Processes
XI. What About Stability?
XII. Thermal Polymerization Of Alkynes To (Ch)X [45]XIII. What Is There Besides Poly(Acetylene)
XIV. Substituted Poly(Acetylene)S [20,45]XV. Poly(Diacetylene)S
XVI. Poly(Pyrrole)—Another Step Forward
XVII. Poly(Pyrrole)-Batteries [54,60]XVIII. New Molecular Arrangements
XIX. Poly(Thiophene)
XX. Substituted Poly(Thiophene)S
XXI. Oligothiophenes
XXII. Characterization [79–82]XXIII. Poly(Phenylenevinylene) Ppv
XXIV. Led’S Lightemitting Diodes [86–89]XXV. Poly(Phenylenesulfide) [17,20]XXVI. Synthesis Of Pps
XXVII. Doping Of Pps [90]XXVIII. Poly(m-Phenylenesulfide)
XXIX. Other Derivatives
XXX. Poly(Aniline): Historical Background And Methods Of Synthesis [20]XXXI. Experimental Details Of Poly(Aniline) Preparations
A. Chemical Oxidation
XXXII. Properties And Uses [13]XXXIII. Further Application [88]XXXIV. Poly(Toluidine)S, Pt [115]XXXV. Poly(Phenylene) [12,13]XXXVI. Poly(Phenylene)S With Alternating Groups
XXXVII. Miscellaneous Polymers
XXXVIII. Phenalene-m-Complexes [119]XIL. Two Dimensional Polymers [24]XL. Magnetic Order In Conducting Polymers
XLI. Carbon-Nano-Tubes ‘The Dernier Cri’ [138]XLII. Applications And Goals For The Future [88,121]Acknowledgements
References
13 Photoconductive Polymers
I. Foreword
II. Introduction
III. Basic Principles Of Photoconductivity
A. Absorption of Radiation
B. Generation of Charge Carriers
C. Injection of Carriers
D. Carrier Transport
IV. Experimental Techniques
V. Classes Of Photoconductive Polymers
A. Polymers with Pendant or in-Chain Electronically Isolated Photoactive Groups
1. Carbazole-Containing Polymers
2. Other Photoconductive Polymers with Non-Conjugated Main Chain
B. Polymers with n-Conjugated Main Chain
C. Polymers with p-Conjugated Main Chain
References
14 Polymers for Organic Light Emitting Devices/Diodes (Oleds)
I. Introduction
II. π-Conjugated Polymers
A. Poly(p-phenylene-vinylene)s (Ppv)
1. Precursor Routes
2. Polycondensation and C–C-Coupling Routes
3. Other Poly(phenylene-vinylene)s
B. Heteroaromatic Systems
C. Light Emitting Polymers (Leps) Based on Polyfluorenes
1. Polyfluorene-Homopolymers
2. Polyfluorene Copolymers
D. Poly(p-phenylene)s
1. Ppps by Transition-Metal-Catalyzed Condensation Reactions
2. Other Routes to Poly( p-phenylene)s
III. Conducting Polymers With Isolated Chromophores
A. Nonconjugated Polymers with Side Chain Chromophores
B. Main Chain Polymers with Defined Segmentation
1. Conjugated Main-chain Polymers with Twisted Conformation
2. Main Chain Polymers with Non-conjugated Interrupters
IV. Conclusions
References
15 Crosslinking and Polymer Networks
I. Introduction
II. Definition Of Polymer Networks
III. Theoretical Considerations
IV. Crosslinking —Concept
A. General Classification of Prepolymers [18]V. Phenol-Formaldehyde Resins
A. Reaction of Phenol and Formaldehyde Under Basic Conditions
B. Curing of Resol Prepolymers
C. Reaction of Phenol and Formaldehyde Under Acidic Conditions
D. Curing of Novolac Prepolymers
VI. Urea- And Melamin-Formaldehyde Resins
VII. Epoxy Resins
A. Aliphatic-Cycloaliphatic Epoxy Compounds and Prepolymers [48]B. Curing
VIII. Crosslinking–Polyurethane Networks
A. Crosslinking
IX. Unsaturated Polyesters Ups
X. Silicon Rubber
A. Curing
B. Radical Crosslinking
C. Crosslinking Via Reactive Structoterminal Precursors
XI. (Meth)Acrylic Networks
XII. Microgels
A. Methods for Preparing Microgels
1. Emulsion (co)polymerization of Monomers
2. Emulsion (co)polymerization of Prepolymers — Unsaturated Polyesters
B. Solution Polymerization
C. Other Techniques
XIII. Elastomers
A. Unaccelerated Sulfur Vulcanization
B. Accelerated Sulfur Vulcanization
XIV. Concluding Remarks
References
Recent Reviews
16 Biodegradable Polymers for Biomedical Applications
I. Introduction
II. Biomedical Polymers
III. Polyesters
A. Polyesters from Hydroxyacids
B. Poly(ester-co-ether)s
C. Hydroxylated Polyesters
D. Carboxylated Polyesters
E. Polyorthoesters
F. Polycarbonates
IV. Poly(Amide-Ester)S
V. Polyamides And Polyaminoacids
VI. Polyenamines
VII. Polyethers
VIII. Polyphosphazenes
IX. Sutures And Wound Repairs
X. Implants And Scaffold For Tissue Engineering
XI. Release And Delivery Systems
XII. Summary
References
17 Controlled/Living Radical Polymerization
I. Chemistry Of Controlled/Living Radical Polymerization (Crp)
II. Controlled/Living Radical Polymerization Based On Reversible Thermal Cleavage Of Weak Covalent Bonds
III. Transition Metal Catalyzed Processes — Atom Transfer Radical Polymerization
IV. Degenerative Transfer
V. Comparison Of Various Methods Of Controlling Radical Polymerization
VI. New Materials By Controlled/Living Radical Polymerization
VII. Compositions
VIII. Architecture
IX. Functionality
X. Applications
XI. Conclusions
People also search for Handbook of Polymer Synthesis 2nd:
handbook of polymer degradation
handbook of polyolefins
handbook of polymer applications in medicine and medical devices
handbook of polymer synthesis characterization and processing
handbook of polymer synthesis characterization and processing pdf
Tags: Hans R Kricheldorf, Oskar Nuyken, Graham Swift, Polymer Synthesis



