Elementary Probability 2nd Edition by David Stirzaker – Ebook PDF Instant Download/Delivery: , 978-
Full download Elementary Probability 2nd Edition after payment
Product details:
ISBN 10: 0521534283
ISBN 13: 978-0521534284
Author: David Stirzaker
Elementary Probability 2nd Table of contents:
0. Introduction
-
0.1 Chance
-
0.2 Models
-
0.3 Symmetry
-
0.4 The Long Run
-
0.5 Pay-Offs
-
0.6 Introspection
-
0.7 FAQs
-
0.8 History
-
Appendix: Review of Elementary Mathematical Prerequisites
1. Probability
-
1.1 Notation and Experiments
-
1.2 Events
-
1.3 The Addition Rules for Probability
-
1.4 Properties of Probability
-
1.5 Sequences of Events
-
1.6 Remarks
-
1.7 Review and Checklist for Chapter 1
-
Worked examples and exercises
-
1.8 Example: Dice
-
1.9 Example: Urn
-
1.10 Example: Cups and Saucers
-
1.11 Example: Sixes
-
1.12 Example: Family Planning
-
1.13 Example: Craps
-
1.14 Example: Murphy’s Law
-
-
Problems
2. Conditional Probability and Independence
-
2.1 Conditional Probability
-
2.2 Independence
-
2.3 Recurrence and Difference Equations
-
2.4 Remarks
-
2.5 Review and Checklist for Chapter 2
-
Worked examples and exercises
-
2.6 Example: Sudden Death
-
2.7 Example: Polya’s Urn
-
2.8 Example: Complacency
-
2.9 Example: Dogfight
-
2.10 Example: Smears
-
2.11 Example: Gambler’s Ruin
-
2.12 Example: Accidents and Insurance
-
2.13 Example: Protocols
-
2.14 Example: Eddington’s Controversy
-
-
Problems
3. Counting
-
3.1 First Principles
-
3.2 Permutations: Ordered Selection
-
3.3 Combinations: Unordered Selection
-
3.4 Inclusion–Exclusion
-
3.5 Recurrence Relations
-
3.6 Generating Functions
-
3.7 Techniques
-
3.8 Review and Checklist for Chapter 3
-
Worked examples and exercises
-
3.9 Example: Railway Trains
-
3.10 Example: Genoese Lottery
-
3.11 Example: Ringing Birds
-
3.12 Example: Lottery
-
3.13 Example: The Ménages Problem
-
3.14 Example: Identity
-
3.15 Example: Runs
-
3.16 Example: Fish
-
3.17 Example: Colouring
-
3.18 Example: Matching (Rencontres)
-
-
Problems
4. Random Variables: Distribution and Expectation
-
4.1 Random Variables
-
4.2 Distributions
-
4.3 Expectation
-
4.4 Conditional Distributions
-
4.5 Sequences of Distributions
-
4.6 Inequalities
-
4.7 Review and Checklist for Chapter 4
-
Worked examples and exercises
-
4.8 Example: Royal Oak Lottery
-
4.9 Example: Misprints
-
4.10 Example: Dog Bites: Poisson Distribution
-
4.11 Example: Guesswork
-
4.12 Example: Gamblers Ruined Again
-
4.13 Example: Postmen
-
4.14 Example: Acme Gadgets
-
4.15 Example: Roulette and the Martingale
-
4.16 Example: Searching
-
4.17 Example: Duelling
-
4.18 Binomial Distribution: The Long Run
-
4.19 Example: Uncertainty and Entropy
-
-
Problems
5. Random Vectors: Independence and Dependence
-
5.1 Joint Distributions
-
5.2 Independence
-
5.3 Expectation
-
5.4 Sums and Products of Random Variables: Inequalities
-
5.5 Dependence: Conditional Expectation
-
5.6 Simple Random Walk
-
5.7 Martingales
-
5.8 The Law of Averages
-
5.9 Convergence
-
5.10 Review and Checklist for Chapter 5
-
Worked examples and exercises
-
5.11 Example: Golf
-
5.12 Example: Joint Lives
-
5.13 Example: Tournament
-
5.14 Example: Congregations
-
5.15 Example: Propagation
-
5.16 Example: Information and Entropy
-
5.17 Example: Cooperation
-
5.18 Example: Strange But True
-
5.19 Example: Capture–Recapture
-
5.20 Example: Visits of a Random Walk
-
5.21 Example: Ordering
-
5.22 Example: More Martingales
-
5.23 Example: Simple Random Walk Martingales
-
5.24 Example: You Can’t Beat the Odds
-
5.25 Example: Matching Martingales
-
5.26 Example: Three-Handed Gambler’s Ruin
-
-
Problems
6. Generating Functions and Their Applications
-
6.1 Introduction
-
6.2 Moments and the Probability Generating Function
-
6.3 Sums of Independent Random Variables
-
6.4 Moment Generating Functions
-
6.5 Joint Generating Functions
-
6.6 Sequences
-
6.7 Regeneration
-
6.8 Random Walks
-
6.9 Review and Checklist for Chapter 6
-
Appendix: Calculus
-
Worked examples and exercises
-
6.10 Example: Gambler’s Ruin and First Passages
-
6.11 Example: “Fair” Pairs of Dice
-
6.12 Example: Branching Process
-
6.13 Example: Geometric Branching
-
6.14 Example: Waring’s Theorem: Occupancy Problems
-
6.15 Example: Bernoulli Patterns and Runs
-
6.16 Example: Waiting for Unusual Light Bulbs
-
6.17 Example: Martingales for Branching
-
6.18 Example: Wald’s Identity
-
6.19 Example: Total Population in Branching
-
-
Problems
7. Continuous Random Variables
-
7.1 Density and Distribution
-
7.2 Functions of Random Variables
-
7.3 Simulation of Random Variables
-
7.4 Expectation
-
7.5 Moment Generating Functions
-
7.6 Conditional Distributions
-
7.7 Ageing and Survival
-
7.8 Stochastic Ordering
-
7.9 Random Points
-
7.10 Review and Checklist for Chapter 7
-
Worked examples and exercises
-
7.11 Example: Using a Uniform Random Variable
-
7.12 Example: Normal Distribution
-
7.13 Example: Bertrand’s Paradox
-
7.14 Example: Stock Control
-
7.15 Example: Obtaining Your Visa
-
7.16 Example: Pirates
-
7.17 Example: Failure Rates
-
7.18 Example: Triangles
-
7.19 Example: Stirling’s Formula
-
-
Problems
8. Jointly Continuous Random Variables
-
8.1 Joint Density and Distribution
-
8.2 Change of Variables
-
8.3 Independence
-
8.4 Sums, Products, and Quotients
-
8.5 Expectation
-
8.6 Conditional Density and Expectation
-
8.7 Transformations: Order Statistics
-
8.8 The Poisson Process: Martingales
-
8.9 Two Limit Theorems
-
8.10 Review and Checklist for Chapter 8
-
Worked examples and exercises
-
8.11 Example: Bivariate Normal Density
-
8.12 Example: Partitions
-
8.13 Example: Buffon’s Needle
-
8.14 Example: Targets
-
8.15 Example: Gamma Densities
-
8.16 Example: Simulation – The Rejection Method
-
8.17 Example: The Inspection Paradox
-
8.18 Example: von Neumann’s Exponential Variable
-
8.19 Example: Maximum from Minima
-
8.20 Example: Binormal and Trinormal
-
8.21 Example: Central Limit Theorem
-
8.22 Example: Poisson Martingales
-
8.23 Example: Uniform on the Unit Cube
-
8.24 Example: Characteristic Functions
-
-
Problems
9. Markov Chains
-
9.1 The Markov Property
-
9.2 Transition Probabilities
-
9.3 First Passage Times
-
9.4 Stationary Distributions
-
9.5 The Long Run
-
9.6 Markov
People also search for Elementary Probability 2nd :
elementary probability and statistics textbook
elementary statistics and probability syllabus
basic probability brainpop jr
what do you mean by elementary event in probability
basic probability calculator
Tags:
David Stirzaker,Elementary,Probability 2nd